金属氧化物压敏电阻—从微观结构到宏观特性(Metal Oxide Varistors-From Microstructure to Macro-characteristics)

作者:何金良

出版:清华大学出版社

年代:2019 更多图书信息

电子纸书:¥104.28 定价: ¥158 纸质书最低¥158起,点此购买

图书简介

金属氧化物压敏电阻是电力和电子系统的关键保护器件,直接决定系统运行的安全可靠性。本书系统介绍了氧化锌等压敏电阻的基础研究、制备工艺、性能调控及应用进展,包括导电及老化机理、微结构电特性、微结构测试及微结构仿真分析、高梯度低残压氧化压敏陶瓷、氧化钛及氧化锡等其他体系压敏陶瓷的研究进展等,构建了压敏电阻微结构特性与宏观特性之间的关联性。
本书可供高校和科研院所电气工程、微电子、材料等专业的师生以及电力传输、电气设备制造等行业的工程技术人员阅读和参考。

(展开)

目录

1 Introduction of Varistor Ceramics 1
1.1 ZnOVaristors 1
1.2 FabricationofZnOVaristors 3
1.2.1 PreparationofRawMaterials 4
1.2.2 SinteringofZnOVaristors 5
1.3 Microstructure 6
1.4 TypicalParametersofZnOVaristors 7
1.5 HistoryofZnOVaristors 9
1.6 ApplicationsofZnOVaristors 12
1.7 AlternativeVaristorCeramics 17
1.8 Ceramic–PolymerCompositeVaristors 18 References 22
2 Conduction Mechanisms of ZnO Varistors 31
2.1 Introduction 31
2.2 BasicConceptsinSolid-StatePhysics 33
2.2.1 AtomicEnergyLevelandEnergyBandofCrystal 33
2.2.2 Metal,Semiconductor,andInsulator 35
2.2.3 CharacteristicsofFermi–DiracFunction 37
2.2.4 ImpurityandDefectEnergyLevel 38
2.3 EnergyBandStructureofaZnOVaristor 39
2.3.1 EnergyBandStructureofaZnOGrain 39
2.3.2 DSBofaZnOVaristor 40
2.3.3 MicroscopicOriginofDSB 41
2.3.4 Asymmetric I–V CharacteristicsoftheDSB 43
2.4 ConductionMechanismofaZnOVaristor 45
2.4.1 ConductionModelBasedonThermionicEmissionProcess 46
2.4.2 MinorityCarrierGenerationProcess 49
2.4.3 TheBypassE?ectModel 51
2.5 DielectricCharacteristicsofaZnOVaristor 51
2.5.1 ExplanationtoDielectricPropertiesofaZnOVaristor 52
2.5.2 E?ectofInterfacialChargeRelaxationonConductingBehaviorofZnOVaristorsUnderTime-VaryingElectricFields 54
2.5.3 DeterminationofBarrierHeightandRelatedParameters 58
2.5.4 DeterminationofDeepDonorLevelintheZnOVaristor 59
2.5.5 DeterminationofGrainandGrainBoundaryConductivity 60 References 62
3 Tuning Electrical Characteristics of ZnO Varistors 67
3.1 Introduction 67
3.2 Liquid-PhaseFabrication 68
3.2.1 MicrostructureofZnOVaristor 68
3.2.2 PolymorphofBismuthOxide 71
3.2.3 In?uenceofBi2O3Concentration 72
3.2.4 VolatilizationofBismuthOxide 72
3.3 PreparingandSinteringTechniques 74
3.3.1 Fabrication 74
3.3.2 FabricationStages 75
3.3.3 E?ectofPores 76
3.4 RoleofOxygenattheGrainBoundary 78
3.5 DopantE?ects 79
3.5.1 E?ectsofAdditives 79
3.5.2 DonorDopants 82
3.5.3 AcceptorDopants 86
3.5.4 AmphotericDopants 87
3.5.4.1 MonovalentDopants 88
3.5.4.2 TrivalentDopants 89
3.5.5 E?ectsofRareEarthOxides 92
3.5.6 DopantsforImprovingtheStability 93
3.5.7 EvidenceforHydrogenasaShallowDonor 95
3.6 RoleofInversionBoundaries 95
3.7 HighVoltageGradientZnOVaristor 98
3.8 LowResidualVoltageZnOVaristor 101
3.8.1 ResidualVoltageRatio 101
3.8.2 LowResidualVoltageZnOVaristorsbyDopingAl 103
3.8.3 LowResidualVoltageZnOVaristorsbyDopingGa 106
3.8.4 LowResidualVoltageZnOVaristorswithHighVoltageGradient 108 References 110
4 Microstructural Electrical Characteristics of ZnO Varistors 125
4.1 Introduction 125
4.2 MethodstoDetermineGrainBoundaryParameters 126
4.2.1 TheIndirectMethod 126
4.2.2 TheDirectMicrocontactMethods 126
4.3 StatisticalCharacteristicsofGrainBoundaryParameters 129
4.3.1 NonuniformityofBarrierVoltages 129
4.3.2 DistributionofBarrierVoltage 131
4.3.3 DistributionofNonlinearCoe?cient 132
Contents
4.3.4 DistributionofLeakageCurrentThroughGrainBoundary 133
4.3.5 DiscussiononMicrocontactMeasurement 133
4.4 Classi?cationofGrainBoundaries 134
4.5 OtherTechniquestoDetectMicrostructurallyElectricalPropertiesofZnOVaristors 137
4.5.1 ScanningProbeMicroscopy-BasedTechniques 137
4.5.2 GalvanicDeterminationofConductiveAreasonaVaristor Surface 139
4.5.3 LineScanDeterminationofDi?erencesinBreakdownVoltageWithinaVaristor 141
4.5.4 CurrentImagesinSEM 141
4.6 TestonFabricatedIndividualGrainBoundary 142
4.6.1 ThinFilmApproach 143
4.6.2 SurfaceIn-Di?usionApproach 143
4.6.3 BicrystalApproach 143 References 145
5 Simulation on Varistor Ceramics 149
5.1 Introduction 149
5.2 GrainBoundaryModel 151
5.2.1 I–V CharacteristicModelofGrainBoundary 151
5.2.2 GBModelConsideringConductionMechanism 154
5.3 SimulationModelof I–V Characteristics 159
5.3.1 Simple2DSimulationModel 159
5.3.2 2DSimulationModelsBasedontheVoronoiNetwork 161
5.3.3 ConsiderationonPoresandSpinels 164
5.3.4 AlgorithmtoSolveEquivalentCircuit 165
5.3.5 ModelVeri?cation 169
5.4 SimulationModelforThermalCharacteristics 170
5.4.1 ThermalConductionAnalysis 171
5.4.2 Pulse-InducedFractureAnalysis 173
5.5 SimulationsonDi?erentPhenomena 174
5.5.1 SimulationonMicrostructuralNonuniformity 174
5.5.2 SimulationonCurrentLocalizationPhenomenon 175
5.5.3 In?uenceofMicrostructuralParametersonBulkCharacteristics 179
5.5.3.1 In?uenceofZnOGrainParameters 180
5.5.3.2 In?uenceofGrainBoundaryParameters 183
5.5.4 In?uentialFactorsonResidualVoltageRatio 186 References 188
6 Breakdown Mechanism and Energy Absorption Capability of ZnO Varistor 193
6.1 Introduction 193
6.2 ImpulseFailureModesofZnOVaristors 194
6.3 MechanismsofPunctureandFractureFailures 197
6.3.1 MechanismsofPunctureFailure 197
6.3.2 MechanismofFractureFailure 201
6.4 SimulationofPunctureandFractureFailures 204
6.4.1 PunctureDestructionSimulation 204
6.4.1.1 PunctureSimulationinMicrostructure 206
6.4.2 CrackingFailureSimulationinMicrostructure 208
6.5 Thermal Runaway 209
6.5.1 PowerLossofZnOVaristor 210
6.5.2 ThermalRunawayMechanism 210
6.5.3 TeststoEnsuretheThermalStabilityCharacteristics 213
6.6 In?uencesofDi?erentFactorsonFailuresofZnOVaristors 213
6.6.1 In?uenceofMicrostructuralNonuniformity 213
6.6.2 In?uenceofElectricalNonuniformityinMicrostructure 216
6.6.3 SimulationAnalysisonBreakdownModes 217
6.7 In?uentialFactorsonEnergyAbsorptionCapability 218
6.7.1 In?uenceoftheAppliedCurrent 218
6.7.2 In?uenceofVaristorCross-sectionalArea 221
6.7.3 SimulationAnalysisonSurgeEnergyAbsorptionCapability 221
6.8 DiscussionsonEnergyAbsorptionCapability 225
6.8.1 EnergyAbsorptionCapabilityDeterminedbyFractureFailure 225
6.8.2 EnergyAbsorptionCapabilityDeterminedbyPunctureFailure 226
6.8.3 DiscussiononNonuniformityofEnergyAbsorptionCapability 228
6.8.4 AdditivesE?ectonEnergyAbsorptionCapability 229
6.8.5 OtherMeasurestoImproveEnergyAbsorptionCapability 230 References 230
7 Electrical Degradation of ZnO Varistors 235
7.1 Introduction 235
7.2 DegradationPhenomenaofZnOVaristors 237
7.2.1 DegradationPhenomenaoftheVaristorBulk 237
7.2.2 DegradationofGrainBoundary 242
7.2.3 PulseDegradationCharacteristics 245
7.2.4 TopographicInformationforDegradationAnalysis 247
7.3 MigrationIonsfortheDegradationofZnOVaristors 249
7.3.1 GrainBoundaryDefectModel 249
7.3.2 ExperimentalProofofIonMigration 251
7.3.3 Identi?cationofDominantMobileIons 252
7.3.4 Three-DimensionalExtension 256
7.4 DegradationMechanismofZnOVaristors 257
7.4.1 DCDegradationMechanism 258
7.4.2 ACDegradationMechanism 258
7.4.3 NonuniformDegradationMechanism 260
7.4.4 PulseDegradationofZnOVaristors 262
7.4.4.1 DegradationMechanismUnderImpulseCurrent 263
7.4.4.2 SuperimposingDegradation 264
7.5 RoleofInteriorMicrocracksonDegradation 266
7.6 AntidegradationMeasures 267
7.6.1 Speci?cPreparationProcedures 268
7.6.2 OptimizationofFormula 269
Contents
7.6.2.1 DopantE?ectsonImprovingACDegradationCharacteristics 270
7.6.2.2 DopantE?ectsonImprovingImpulseDegradationProperty 271 References 272
8 Praseodymium/Vanadium/Barium-Based ZnO Varistor Systems 281
8.1 PraseodymiumSystem 281
8.1.1 DopingE?ects 281
8.1.2 E?ectofSinteringProcesses 285
8.1.3 High-VoltageApplications 288
8.1.4 Low-VoltageApplications 288
8.2 VanadiumSystem 289
8.2.1 DopingE?ects 290
8.2.2 ElectricalCharacteristics 291
8.2.3 MicrostructuralCharacteristics 292
8.2.4 E?ectsofVanadiumOxideonGrainGrowth 294
8.3 BariumSystem 295
8.3.1 PreparationandElectricalCharacteristics 295
8.3.2 MicrostructuralCharacteristics 296
8.3.3 ImprovingStabilityAgainstMoisture 298
8.4 ZnO–GlassVaristor 298 References 300
9 Fabrications of Low-Voltage ZnO Varistors 307
9.1 Introduction 307
9.2 ExaggeratingGrainGrowthbySeedGrains 308
9.3 SynthesisofNanocrystallineZnOVaristorPowders 309
9.3.1 Gas-PhaseProcessingMethods 309
9.3.2 CombustionSynthesis 311
9.3.3 Sol–GelMethods 311
9.3.4 Solution-CoatingMethod 315
9.4 Nano?llersinZnOVaristorCeramics 320
9.5 SinteringTechniquestoControlGrainGrowth 321
9.5.1 Step-sinteringApproach 321
9.5.2 MicrowaveSinteringMethod 322
9.5.3 SparkPlasmaSinteringTechnique 324 References 327
10 Titanium-Based Dual-function Varistor Ceramics 335
10.1 SrTiO3 Varistors 335
10.1.1 Introduction 335
10.1.2 MicrostructureofSrTiO3Varistors 336
10.1.3 PreparationofSrTiO3Varistors 336
10.1.4 PerformanceofSrTiO3 338
10.1.5 ConductionMechanismofSrTiO3 339
10.2 TiO2-BasedVaristors 341
10.2.1 Introduction 341
10.2.2 PreparationofTiO2-BasedVaristors 342
10.2.3 MechanismofTiO2Capacitor–VaristorCeramics 342
10.2.4 DopingofTiO2-BasedVaristors 343
10.2.4.1 Acceptor-DopedTiO2-BasedVaristors 343
10.2.4.2 Donor-DopedTiO2-BasedVaristors 344
10.2.4.3 CodopingE?ectsofAcceptorandDonorDopants 345
10.2.4.4 SinteringAdditivesinTiO2-BasedVaristors 347
10.2.5 DevelopmentofTiO2-BasedVaristors 348
10.3 CaCu3Ti4O12 Ceramics 348
10.3.1 Introduction 348
10.3.2 StructureofCCTO 349
10.3.2.1 CrystalStructure 349
10.3.2.2 PhaseandMicrostructure 350
10.3.3 PerformancesofCCTOCeramics 352
10.3.3.1 NonohmicCurrent–VoltageCharacteristic 352
10.3.3.2 ColossalPermittivity 354
10.3.3.3 DielectricLoss 357
10.3.4 Mechanism 358
10.3.4.1 IBLCModel 358
10.3.4.2 ConductingMechanism 362
10.3.4.3 PolarizationMechanismofGrains 364
10.3.4.4 APolaronicStackingFaultDefectModel 365
10.3.5 RoleofDopants 366
10.3.5.1 RoleofDopingCuO 366
10.3.5.2 DopingMechanismstoTuneCCTOPerformances 368
10.4 BaTiO3VaristorsofPTCRE?ect 375
10.4.1 Introduction 375
10.4.2 DopingE?ects 377
10.4.3 PreparationofBaTiO3Ceramics 379
10.4.4 PTCRE?ectofBaTiO3Ceramics 381
10.4.5 VaristorCharacteristicsofBaTiO3Ceramics 384 References 386
11 Tin Oxide Varistor Ceramics of High Thermal Conductivity 407
11.1 PreparationofSnO2-BasedVaristors 407
11.2 ElectricalPerformancesofSnO2-BasedVaristors 410
11.3 MechanismofSnO2-BasedVaristors 414
11.3.1 FormationofGrainBoundaryPotentialBarrier 414
11.3.2 AtomicDefectModel 415
11.3.3 AdmittanceSpectroscopyAnalysis 417
11.3.4 Capacitance–VoltageAnalysis 420
11.3.5 E?ectofThermalTreatment 421
11.4 RoleofDopantsinTuningSnO2-BasedVaristors 423
11.4.1 DopantsforDensifyingSnO2-BasedVaristors 423
11.4.2 AcceptorDoping 424
Contents
11.4.3 DonorDoping 427
11.5 ThermalPerformances 429
11.6 DegradationBehaviors 431
11.7 DevelopmentofSnO2-BasedVaristors 432 References 434
12 WO3-Based Varistor Ceramics of Low Breakdown Voltage 441
12.1 Introduction 441
12.2 TungstenOxide 442
12.3 PreparationofWO3-BasedVaristors 444
12.4 ElectricalPerformances 446
12.5 ImprovingtheElectricalStability 448
12.6 MechanismModelofWO3-BasedVaristors 449
12.7 DopingE?ects 452
12.7.1 TheAdditionofRareEarthOxides 452
12.7.2 TheAdditionofCuO 453
12.7.3 TheAdditionofAl2O3 454
12.7.4 TheAdditionofTiO2 455
12.7.5 TheAdditionofOtherAdditives 455 References 456
Index 461
(展开)

书页展示

更多图书信息
数据来源于网络,如有问题,请反馈至此邮箱:service@bookask.com

作者:何金良
出版:清华大学出版社

ISBN:9787302533368

出版日期:2019-08-01

清华大学出版社

清华大学出版社

清华大学出版社成立于1980年6月,是由教育部主管、清华大学主办的综合出版单位。植根于“清华”这座久负盛名的高等学府,秉承清华人“自强不息,厚德载物”的人文精神,清华大学出版社在短短二十多年的时间里,迅速成长起来。作为来自一流大学的出版单位,清华大学出版社始终坚持弘扬科技文化产业、服务科教兴国战略的出版方向,把出版高等学校教学用书和科技图书作为主要任务,并为促进学术交流、繁荣出版事业设立了多项出版基金,逐渐形成了以出版高水平的教材和学术专著为主的鲜明特色,在教育出版领域树立了强势品牌。目前,清华版教材已在全国一百多所院校得到广泛使用。高品质、多层次的计算机图书是清华大学出版社的一大品牌支柱。20世纪80年代末,在席卷全球的信息化浪潮中,清华大学出版社快速切入计算机图书市场,逐渐成为并一直保持这一市场的领先地位,为发展中国计算机教育做出了巨大贡献。

(展开)
Copyright ©2021  BookAsk 书问  |  京ICP证160134号   |  

京公网安备 11010802026432号

  |  出版物经营许可证新出发京零字第海150168号   |  营业执照:91110108318038279C   |  网站地图   |  关于我们   |  合作伙伴   |  商务合作   |  友情链接